Big Data for Studying Population Migration: Analytical Capabilities
Table of contents
Share
QR
Metrics
Big Data for Studying Population Migration: Analytical Capabilities
Annotation
PII
S207987840029686-3-1
Publication type
Article
Status
Published
Authors
Ivan Aleshkovski 
Affiliation: Lomonosov Moscow State University
Address: Russian Federation, Moscow
Alexandr Grebenuk
Affiliation: Lomonosov Moscow State University
Address: Russian Federation, Moscow
Anastasiya Maksimova
Affiliation: Lomonosov Moscow State University
Address: Russian Federation, Moscow
Abstract

The article discusses the possibilities and features of usage the “big data” processing methods for studying population migration. Particular attention is paid to the main problems of obtaining primary information from digital sources and the limitations of their use. The article assesses the possibilities of using “digital traces” of mobile operators, application routing and open data from social networks to analyze migration flows. It also provides specific examples of such research and draws conclusions about the prospects for using digital “big data” services to enrich the information of classical migration registration tools.

Keywords
population migration, big data, information sources, social networks
Источник финансирования
This research was carried out as part of the Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University «Mathematical Methods of Analysis of Complex Systems». Project 23А-SH05-04.
Received
15.09.2023
Publication date
31.12.2023
Number of characters
33221
Number of purchasers
7
Views
160
Readers community rating
0.0 (0 votes)
Cite Download pdf 200 RUB / 1.0 SU

To download PDF you should pay the subscribtion

Full text is available to subscribers only
Subscribe right now
Only article and additional services
Whole issue and additional services
All issues and additional services for 2023

References

1. Aleshkovski I., Grebenuk A., Sidorov I. Social Risks and Negative Consequences of Diffusion of Artificial Intelligence Technologies // ISTORIYA. 2022. Vol. 13. Issue 4 (114). URL: https://history.jes.su/s207987840019849-2-1/ DOI: 10.18254/S207987840019849-2

2. VTsIOM Issledovanie: Tsifrovoj detoks — 2023: o pol'zovanii internetom i otdykhe ot nego. Iyun' 2023 g. [Ehlektronnyj resurs]. URL: https://wciom.ru/analytical-reviews/analiticheskii-obzor/cifrovoi-detoks-2023-o-polzovanii-internetom-i-otdykhe-ot-nego (data obrascheniya: 30.11.2023).

3. Gradosel'skaya G. V. Setevye izmereniya v sotsiologii: uchebnoe posobie. M.: Feniks, 2004.

4. Guba K. Bol'shie dannye v sotsiologii: novye dannye, novaya sotsiologiya? // Russian Sociological Review. 2018. Vol. 17. No. 1. P. 213—236. DOI: 10.17323/1728-192X-2018-1-213-236.

5. Dmitriev A. S. Big data, 4v: volume, velocity, variety, value. // Monitoring obschestvennogo mneniya. № 2 (126). Mart — aprel' 2015. S. 156—159.

6. Zamyatina N. Yu., Yashunskij A. D. Virtual'naya geografiya virtual'nogo naseleniya // Monitoring obschestvennogo mneniya: ehkonomicheskie i sotsial'nye peremeny. 2018. № 1. S. 117—137. DOI: 10.14515/monitoring.2018.1.07.

7. Musin U. R., Nusratullin I. V. Primenenie «bol'shikh dannykh» v otsenke migratsionnykh protsessov. // Vestnik Moskovskogo universiteta. 2017. № 7—8.

8. Ofitsial'nyj portal kompanii “Brand Analitycs” [Ehlektronnyj resurs]. URL: https://brandanalytics.ru/statistics/author (data obrascheniya: 30.11.2023).

9. Ofitsial'nyj sajt Pravitel'stva Rossii [Ehlektronnyj resurs]. URL: http://government.ru/news/49647/ (data obrascheniya: 30.11.2023).

10. Ukaz Prezidenta Rossijskoj Federatsii ot 31 oktyabrya 2018 g. № 622 «O Kontseptsii gosudarstvennoj migratsionnoj politiki Rossijskoj Federatsii na 2019—2025 gg.» (s izmeneniyami i dopolneniyami ot 12 maya 2023 g.) [Ehlektronnyj resurs]. URL: https://base.garant.ru/72092260/ (data obrascheniya: 30.11.2023).

11. Chernyshev K. A. Mezhregional'nye svyazi naseleniya Kryma: issledovanie na osnove tsifrovykh i statisticheskikh dannykh o mestakh rozhdeniya migrantov // Geopolitika i ehkogeodinamika regionov. 2022. T. 8. № 3. S. 253—264.

12. Chudinovskikh O. S. Bol'shie dannye i statistika migratsii // Voprosy statistiki. 2018. № 25 (2).

13. Shnejder L. B., Symanyuk V. V. Pol'zovatel' v informatsionnoj srede: tsifrovaya identichnost' segodnya // Psikhologicheskie issledovaniya. 2017. T. 10. № 52. DOI: 2017v10n52/1406.

14. Shul'ts V. L., Grebenyuk A. A., Ashmanov I. S. Teoretiko-metodologicheskie problemy tsifrovoj sotsiologii // Vestnik Moskovskogo universiteta. Seriya 18. Sotsiologiya i politologiya. 2022. T. 28. № 1. S. 126—144. DOI 10.24290/1029-3736-2022-28-1-126-144.

15. Alexander M., Polimis K., Zagheni E. The impact of Hurricane Maria on out-migration from Puerto Rico: Evidence from Facebook data // Population and Development Review. 2019. V. 45. No. 3. P. 617—630. DOI: 10.1111/padr.12289.

16. Bertocchi D. Exploring mobile network data for tourism statistics: the collaboration between Istat and Vodafone Business Italia // Rivista di Statistica Ufficiale. 2022. № 3. P. 43—76. DOI: 10.1481/ISTATRIVISTASTATISTICAUFFICIALE_3.2022.02.

17. Big data, migration and human mobility [Ehlektronnyj resurs]. URL: https://www.migrationdataportal.org/themes/big-data-migration-and-human-mobility (data obrascheniya: 15.11.2023).

18. Chaoming Song, Zehui Qu, Nicholas Blumm, Albert-László Barabási Limits of Predictability in Human Mobility. // Science. 19 February 2010. Vol. 327. Issue 5968. P. 1018—1021. DOI: 10.1126/science.1177170.

19. COVID‑19-Mobility Trends Reports — Apple [Ehlektronnyj resurs]. URL: https://covid19.apple.com/mobility (data obrascheniya: 30.11.2023).

20. COVID-19 Community Mobility Report [Ehlektronnyj resurs]. URL: https://www.google.com/covid19/mobility/ (data obrascheniya: 30.11.2023).

21. Dubois A., Zagheni E., Garimella K., Weber I. Studying migrant assimilation through Facebook interests // Social Informatics. SocInfo. Lecture Notes in Computer Science, V. 11186 / ed. S. Staab, O. Koltsova, D. Ignatov. Cham: Springer, 2018. P. 51—60. DOI: 10.1007/978-3-030-01159-8_5.

22. Gualda E., Rebollo C. The refugee crisis on Twitter: A diversity of discourses at a European crossroads // Journal of Spatial and Organizational Dynamics. 2016. V. 4. No. 3. P. 199—212.

23. Lu X., Wetter E., Bharti N., Tatem A.J., Bengtsson L. Approaching the limit of predictability in human mobility // Sci Rep. 2013. October 11.3. Issue 2923. DOI: 10.1038/srep02923.

24. Marquez N., Garimella K., Toomet O., Weber I. G., Zagheni E. Segregation and sentiment: Estimating refugee segregation and its effects using digital trace data // Guide to Mobile Data Analytics in Refugee Scenarios: The Data for Refugees Challenge Study / ed. A. Salah, A. Pentland, B. Lepri, E. Letouzé. Cham: Springer, 2019. P. 265—282. DOI: 10.1007/978-3-030-12554-7_14.

25. Righi A. Assessing migration through social media: a review. // Mathematical Population Studies. 2019. V. 26. No. 2. P. 80—91. DOI: 10.1080/08898480.2019.1565271.

26. Social Media and Forced Displacement: Big Data Analytics and Machine Learning. UN Global Pulse and UNHCR Innovation Service. White Paper. September 2017 [Ehlektronnyj resurs]. URL: https://www.unhcr.org/innovation/wp-content/uploads/2017/09/FINAL-White-Paper.pdf (data obrascheniya: 23.11.2023).

27. Stewart I., Flores R., Riffe T., Weber I., Zagheni E. Rock, Rap, or Reggaeton? Assessing Mexican immigrants’ cultural assimilation using Facebook data // Proceedings of the World Wide Web Conference (WWW ‘19). San Francisco, CA, USA, May 13—17, 2019 / ed. L. Liu, R. White. N. Y.: Association for Computing Machinery. 2019. P. 3258—3264. DOI: 10.1145/3308558.3313409.

28. Wasif & Arshad, Iram & Alsamhi, Saeed. Big Data Testing Techniques: Taxonomy, Challenges and Future Trends // Computers, Materials & Continua. 2022. No. 74. DOI: 10.32604/cmc.2023.030266.

29. Witteborn S. The digital gift and aspirational mobility // International Journal of Cultural Studies. 2019. V. 22. No. 6. P. 754—769. DOI: 10.1177/1367877919831020.

Comments

No posts found

Write a review
Translate